ARITHMETIC MEAN OF VALUES AND VALUE AT MEAN OF ARGUMENTS FOR CONVEX FUNCTIONS
نویسندگان
چکیده
منابع مشابه
Mean-value Theorems for Multiplicative Arithmetic Functions of Several Variables
Let f : Nn → C be an arithmetic function of n variables, where n ≥ 2. We study the mean-value M(f) of f that is defined to be lim x1,...,xn→∞ 1 x1 · · ·xn ∑ m1≤x1, ... , mn≤xn f(m1, . . . , mn), if this limit exists. We first generalize the Wintner theorem and then consider the multiplicative case by expressing the mean-value as an infinite product over all prime numbers. In addition, we study ...
متن کاملMean values of multiplicative functions
Let f(n) be a totally multiplicative function such that |f(n)| ≤ 1 for all n, and let F (s) = ∑∞ n=1 f(n)n−s be the associated Dirichlet series. A variant of Halász’s method is developed, by means of which estimates for ∑N n=1 f(n)/n are obtained in terms of the size of |F (s)| for s near 1 with 1. The result obtained has a number of consequences, particularly concerning the zeros of the p...
متن کاملconditional copula-garch methods for value at risk of portfolio: the case of tehran stock exchange market
ارزش در معرض ریسک یکی از مهمترین معیارهای اندازه گیری ریسک در بنگاه های اقتصادی می باشد. برآورد دقیق ارزش در معرض ریسک موضوع بسیارمهمی می باشد و انحراف از آن می تواند موجب ورشکستگی و یا عدم تخصیص بهینه منابع یک بنگاه گردد. هدف اصلی این مطالعه بررسی کارایی روش copula-garch شرطی در برآورد ارزش در معرض ریسک پرتفویی متشکل از دو سهام می باشد و ارزش در معرض ریسک بدست آمده با روشهای سنتی برآورد ارزش د...
Singular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملDecay of Mean-values of Multiplicative Functions
p 1−f(p) p diverges then the limit in (1.1) exists, and equals 0 = Θ(f,∞). Wirsing’s result settled an old conjecture of P. Erdős and Wintner that every multiplicative function f with −1 ≤ f(n) ≤ 1 had a mean-value. The situation for complex valued multiplicative functions is more delicate. For example, the function f(n) = n (0 6= α ∈ R) does not have a mean-value because 1 x ∑ n≤x n iα ∼ x 1+i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The ANZIAM Journal
سال: 2008
ISSN: 1446-1811,1446-8735
DOI: 10.1017/s1446181108000199